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ABSTRACT:

Since the introduction of the persistent scatterer technique (PS-InSAR) the applicability of radar interferometry has in-
creased considerably. As PS-InSAR applications are moving towards low subsidence areas with unfavorable conditions
regarding PS density and atmospheric signal, a rigid quality assessment of the estimated parameters is becoming essen-
tial. Moreover, a strict quality description enables the integration of PS-InSAR with other geodetic techniques, such as
leveling and GPS. Our PS-InSAR processing chain based on geodetic least-squares adjustment techniques combined with
integer least-squares estimation to solve the phase ambiguities is described. This approach enables an elegant description
of the precision by error propagation and an assessment of the reliability of the estimated parameters. The functional and
stochastic framework used are shown, together with the algorithms used. Furthermore, the strategy to integrate PS-InSAR
measurements with other geodetic observations is presented.

1 INTRODUCTION

With the introduction of the Persistent Scatterer technique
(PS-InSAR) (Ferretti et al., 2000, 2001) the applicability
of radar interferometry has increased considerably. Topog-
raphy and deformation parameters can now be estimated,
even in mainly decorrelated areas, using isolated time co-
herent scatterers. As PS-InSAR applications are therefore
moving towards slow subsidence areas with unfavorable
conditions regarding PS density and atmospheric signal, a
rigid quality assessment of the estimated parameters is be-
coming essential. Moreover, a strict quality description is
required to integrate PS-InSAR with other geodetic tech-
niques, such as leveling and GPS.

2 GEODETIC DATA ADJUSTMENT, TESTING
AND QUALITY CONTROL

Random (noise) and systematic errors (biases) in geodetic
observations prevent a straightforward transformation of the
observations into the parameters of interest. A systematic
and rigorous methodology is needed to handle this problem.
This methodology consists of three steps: data adjustment,
testing and quality control.

Because measurements contain (random) errors, they are
adjusted to fit the functional model. The functional model
describes the relation between the measurements and the
parameters of interest. Together with the stochastic model,
which contains the statistical properties of the measure-

ments, it forms the mathematical model. The general form
of the mathematical model is denoted in Gauss-Markov
form by

E{y} = Ax ; D{y} = Qy (1)

where the underline denotes the stochasticity of the mea-
surements and

E{.} expectation operator
y vector of observations
A design matrix
x vector of unknowns
D{.} dispersion
Qy variance matrix

To estimate an optimal solution, the difference between the
observations and the model is minimized in a least-squares
sense. Linear least-squares estimators that have optimal
properties in the sense that they are unbiased and have min-
imum variance are called Best Linear Unbiased Estimators
(BLUE). For normal distributed data, the BLUE estimator
is equal to the Maximum Likelihood (ML) estimator (Teu-
nissen, 2000).

Once estimates of the unknown parameters and their vari-
ance matrix are obtained, the validity of the mathematical
model is tested. That is, the model is tested for errors in the
observations y, in the design matrix A and in the variance
matrix Qy. It is important to realize that it is only possible
to test the model when there is redundancy, that is, when
the number of observations is larger than the number of un-
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knowns.

Testing is performed by subsequent comparison of two hy-
potheses: the null hypothesis H0 and the alternative hy-
pothesis Ha (Teunissen, 2000). Symbolically the hypothe-
ses can be denoted as

H0 : E{y} = Ax ; D{y} = Qy (2)

Ha : E{y} = Ax + C∇ ; D{y} = Qy (3)

The null hypothesis describes the situation that there are
no errors in the model, whereas the alternative hypothesis
assumes that there is a certain error. Test statistics are de-
termined and compared to a critical value kα to determine
which hypothesis should be rejected.

The impact of (deformation) estimates cannot be evaluated
without a quality description. The quality of geodetic prod-
ucts can be parameterized in precision and reliability terms.
Precision describes the variability of the observables and
the estimators of the unknown parameters. The precision is
quantified in the variance matrix. The reliability describes
the sensitivity of the estimators for model errors. Precision
and reliability are independent components of the quality
description. A high precision of the observables does not
imply a reliable estimation of the unknown parameters and
vice versa. Precision and reliability together are called ac-
curacy.

3 PS-INSAR USING INTEGER LEAST-SQUARES

The most crucial step in PS-InSAR is the correct estimation
of the integer valued phase ambiguities. Only when the am-
biguities are estimated correctly, the derived deformation
parameters will be reliable. Often the ambiguity function
(Counselman and Gourevitch, 1981) is used, which per-
forms a discrete search in the solution space. However, be-
cause of its optimality property for normal distributed data,
here the integer least-squares technique is applied (Teunis-
sen, 1993). The integer least-squares technique is encap-
tured in the methodology described in Section 2. Hence, an
elegant quality description can be obtained, which enables
the integration of the PS-InSAR results with other geodetic
data.

3.1 Integer least-squares

The basic concept of the integer least-squares technique is
to use the knowledge that some parameters, in this case the
ambiguities, are integer valued. The problem can be formu-
lated with the extended Gauss-Markov model

E{y} = Aa + Bb, y ∈ R, a ∈ Z, b ∈ R; D{y} = Qy,

(4)
where

A design matrix for integer parameters
B design matrix for real parameters
a vector with integer unknown parameters
b vector with real unknown parameters

The system of equations Eq. (4) is solved in a three step pro-
cedure. First, the float solution is computed by neglecting
the integer property of the ambiguities. Hence, a standard
least-squares adjustment is applied to obtain the estimates
â, b̂ and the accompanying variance matrix

[

Qâ Q
âb̂

Q
b̂â

Q
b̂

]

(5)

Then, the ambiguities are resolved in a least-squares sense.
To reduce the computation time, the ambiguities are decor-
related using the LAMBDA method (Least-squares AMBi-
guity Decorrelation Adjustment method)(Teunissen, 1993).
The decorrelating transformation reads

ẑ = ZT â, Qẑ = ZT QâZ (6)

The integer ambiguities are obtained by solving the mini-
mization problem

min
z∈Z

(ẑ − z)T Q−1
ẑ (ẑ − z) (7)

Back-transformation gives the fixed ambiguities ǎ.

Once the ambiguities are estimated, the float solution of the
parameters of interest b̂ is updated using the fixed ambigui-
ties. The fixed solution reads

b̂|a = b̂ − Q
b̂â

Q−1
â (â − ǎ)

.
= b̌ (8)

Qb̌ = Q
b̂
− Q

b̂â
Q−1

â Q
âb̂

+ Q
b̂â

Q−1
â QǎQ−1

â Q
âb̂

, (9)

where

Qǎ =
∑

z∈Z

(z − a)(z − a)T P (ǎ = z) (10)

Hence, the variance of the fixed solution is not only depen-
dent on the variance of the float solution, but also on the
chance of success in the ambiguity resolution. This chance
of success is denoted by the success rate P (ǎ = a). Be-
cause of its discrete nature, the fixed ambiguities ǎ have
a probability mass function (PMF) and the fixed solution
a multi-modal probability density function (see Figures 1
and 2). Unfortunately, the success rate for the integer least-
squares estimator can not be computed in closed form.
Therefore, simulations based on the mathematical model
are required to determine the success rate.
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Figure 1. Example of the float ambiguity PDF in 2D
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Figure 2. Example of the integer ambiguity PMF in 2D

3.2 Processing chain for PS-InSAR

The processing chain for PS-InSAR is based on the integer
least-squares principle. To reduce the effect of atmospheric
signal delay and orbit errors, differential phase observations
between Persistent Scatterers Candidates (PSC) are used to
estimate the ambiguities and the parameters of interest. The
mathematical model has the form

E{

[

y
1

y
2

]

} =

[

A1

A2

]

a +

[

B1

B2

]

b;

D{

[

y
1

y
2

]

} =

[

Qy1
0

0 Qy2

]

(11)

where

y
1

double-difference phase observations
y
2

pseudo observables
A1, A2, B1, B2 design matrices
a unknown ambiguities
b unknown parameters of interest

The pseudo-observables are required to solve the rank-
deficiency of the model. This rank-deficiency is a result of
the fact that for each phase observation an ambiguity needs
to be estimated. Therefore, no information is left to estimate
the parameters of interest. This problem is solved by in-
serting pseudo-observables y2 (obvious choice is zero) with
high enough variance Qy2

to ensure flexibility.

The ambiguities are resolved using hypothesis tests as de-
scribed in Section 2 in a recursive scheme. First a linear
model is evaluated. If the residues between the model and

the unwrapped phase observations are small enough, the as-
sumption is made that the ambiguities are estimated cor-
rectly. If not, an alternative deformation model is tested,
etc. If necessary, this procedure is repeated for all speci-
fied models. In case all deformation models are rejected,
the last alternative hypothesis is accepted, which states that
the point noise of the arc between the two (PSC) involved is
too large. Hence, that at least one of the PSC is not a Persis-
tent Scatterer. Consequently, this arc is removed from the
dataset.

The functional model in case only a linear deformation rate
is estimated has the form (Kampes and Hanssen, 2004)

E{

[

y
1

y
2

]

} =

[

−2πI

0

]

a +





β T

1 0
0 1





[

H

D

]

(12)

where

I identity matrix
β height-to-phase conversion factor
T temporal baselines
H topographic height [m]
D linear deformation rate [m/year]

This model can easily be adapted with more deformation
parameters, e.g. describing a periodic signal. However, for
each extra parameter an additional pseudo-observable is re-
quired. This will influence the strength of the model and
thereby the success rate. However, by testing various de-
formation models, the chance a good fit will be detected
increases, hence increasing the success rate. As a result,
more PS are identified. That is, less arcs are rejected due to
model noise (deviation of the model from the true but un-
known model) instead of point noise (stability of the phase).

After resolving the ambiguities, Eqs. (8 and 9) can be used
to estimate the fixed parameters of interest. However, these
estimates are be biased by the pseudo-observables and the
accompanying variance matrix. Due to the lack of redun-
dancy, these initial values propagate in the float estimates
and variance matrices. Therefore, a different approach is
followed. The original phase observations are unwrapped
using the estimated ambiguities (Kampes, 2005)

yunw
1

= y
1
− A1ǎ (13)

leaving the system of equations

E{yunw
1

} = B1b; D{yunw
1

} = Qyunw

1
= Qy1

(14)

This implies the assumption that the ambiguities are esti-
mated correctly, hence, that the success rate equals one. To
check this, the full network is analyzed for closing errors
of the ambiguities using hypotheses tests. If needed, non-
fitting arcs are corrected or removed. As an example, Fig-
ure 3 shows a network for a small part (2 × 10 km) of Las



Vegas. Non-fitting arcs (red) are removed. Once there are
no more closing errors, the ambiguities are assumed to be
unwrapped correctly and the success rate is set to one. Ob-
viously, loose arcs can not be tested and are removed from
the data set.

Now the ambiguities are assumed deterministic, the param-
eters of interest can easily be calculated using a standard
least-squares estimator

Qb̌ = (BT
1 Q−1

y1
B1)

−1 (15)

b̌ = Qb̌B
T
1 Q−1

y1
yunw
1

(16)

With this, estimates for the topography and deformation
are obtained, together with variance matrices describing
the precision. However, the unwrapped phases (Eq. (13))
can also be further processed, e.g., to filter atmospheric ef-
fects and/or to integrate PS-InSAR with other geodetic tech-
niques. This is described in the next section.

Figure 3. Network of PS for a small area in Las Vegas
(2× 10 km).

4 DATA INTEGRATION

Integration of PS-InSAR measurements with observations
from other (geodetic) techniques is not straightforward.
This paragraph describes the main issues to resolve for in-
tegration of measurements from different techniques for pa-
rameter estimation including a quality description.

4.1 The observations

A precise measurement is not necessarily a reliable mea-
surement. When combining observations from different
techniques the importance of the reliability concept in-
creases: what exactly are we measuring? What is the phys-
ical shape of the measurement point and what kind of sur-
face deformation does it quantify? Data integration there-
fore starts with the analysis of the observations themselves.
One has to realize that observations from different tech-
niques are often both physically and information-wise not
the same. To demonstrate this, PS-InSAR is compared to
the leveling technique, which is commonly used for valida-
tion purposes.

4.1.1 Physical representation of the observations

Leveling measurements refer to well-defined benchmarks
mounted on a (stable) subsurface layer, whereas PS-InSAR

measurements are summed-up reflections from a resolution
cell containing a dominant scatterer. The physical represen-
tation of the PS measurement depends on the location and
the type of reflection.

To locate the PS ’measurement point,’ is it necessary to
quantify the PS location uncertainty in geographical coordi-
nates. The PS location uncertainty depends on accuracy of
the reference point height, orbital inaccuracies and acquisi-
tion timing errors, estimated to be between 1 and 8 m.

To classify the type of reflection there are several options.
First, polarization may be used to distinguish between even
and odd bounced scatterers. Such a procedure is usually
not possible, as most acquisitions are in single polariza-
tion mode. If alternating polarization is available, the same
PS have to be identified. A second method is the accu-
rate coregistration of the PS locations and their estimated
heights with a geographical database. Then PS are com-
pared with a 3D city model, to determine where the dom-
inant reflection physically stems from, e.g., roof reflection
or curb-to-wall double bounces. Additional information is
required from the area, such as classified topographic maps
in vector and/or raster format and laser altimetry data. To
perform this comparison, precision estimates of the PS lo-
cations and their estimated (residual) heights are required,
as well as the accuracy of the additional maps.

4.1.2 Information contents of the observations

Information-wise, PS-InSAR and leveling observations are
not the same, as they differ in spatio-temporal contents. A
leveling measurement ht

ij is a spatial height difference be-
tween points i and j on time t. A PS-InSAR measurement
dmt

i is a temporal interferometric difference between master
time m and slave time t, for a certain point i. The first in-
terpretable PS-InSAR observation is the double-difference
dmt

ri , both temporally (between master and slave) and spa-
tially (with respect to a reference point r) (Hanssen, 2004).
They can be reformulated in the form of leveling type of ob-
servations by setting the spatial deformation in the master
image to 0:

dmt
ri = dm

ri − dt
ri ; dm

ri = 0 → dmt
ri = −dt

ri

(17)

On the other hand, it is also possible to construct double-
differences from the leveling observations:

ht1t2
ij = ht1

ij − ht2
ij (18)



Figure 4. PS-InSAR double-differences.

Figure 5. Leveling double-differences.

Figure 4 and 5 show the difference between PS-InSAR and
leveling double-differences. Note that a leveling (spatial)
single difference can be measured directly, whereas for the
PS-InSAR temporal single difference, an interferogram has
to be created.

4.2 Geometric and orthometric heights

The type of heights resulting from different measurement
techniques, like PS-InSAR and leveling, may also differ.
We distinguish between geometric (ellipsoidal) and ortho-
metric height. A leveling instrument is always positioned
perpendicular on the gravity field. Therefore heights are
measured relative to an equipotential level surface. The
equipotential surface of the earth’s gravity field that follows
the global mean sea level is called the geoid. Heights mea-
sured relative to the geoid are called orthometric heights.

GPS, PS-InSAR and orbital heights are heights referring to
a mathematical ellipsoidal shape of the earth. The differ-
ence between ellipsoid and geoid can be determined from
gravity measurements and results in a geoid model, e.g.,
EGM96. The difference between ellipsoid heights (PS-
InSAR) and orthometric heights (leveling) is equal to the
geoid height (geoid undulation):

N = H − h (19)

where

N geoid height
H ellipsoidal height (PS-InSAR)
h orthometric height (leveling)

As the observations are spatial differences, the relative ac-
curacy of two nearby points is of importance. This is gen-
erally much higher than the accuracy of the geoid itself
(centimeter-decimeter level). To convert PS-InSAR defor-
mation measurements to the leveling height system, they
have to be converted from slant-range to the vertical and
from ellipsoidal to orthometric displacements.

4.3 Estimation in phases

Because of the different physical properties of the measure-
ment points, benchmark versus reflection, it is not possi-
ble to compare both measurements directly. The integrated
use of leveling and PS-InSAR measurements arises in the
joint estimation of the unknown (deformation) parameters.
The question arises where to start the data integration for
PS-InSAR? Which PS-InSAR observation is most suitable
to merge with observations from other techniques: the raw
SAR observations, the interferometric phase, the double-
difference or the deformation estimate? It should not matter
which starting observations are taken, a long as their vari-
ance matrix is propagated correctly.

To answer the question of which PS-InSAR observation to
use in the integration, we start from the mathematical model
as defined in equation 14:

E{yunw
1

} = B1b

D{yunw
1

} = Qy
1

= Qatmo + Qdefo,res + Qn

Based on this model, we predict the realization of the
stochastic deformation vector, which is used as vector of
observations in the data integration. Here, the Best Linear
Unbiased Prediction (BLUP) theory (Teunissen et al., 2005)
is applied based on the Best Linear Unbiased Estimator b̌

and its variance matrix. The BLUP problem can be struc-
tured as a partitioned linear model where only y is observed
and z needs to be predicted:

[

yunw
1
z

]

=

[

B1

Bdefo

]

b +

[

e

sdefo,res

]

(20)

where

z PS-InSAR deformation vector to be pre-
dicted

Bdefo design matrix specifying the relation to the
deformation parameters

e residual vector, consisting of atmospheric
signal, residual deformation signal and
measurement errors

sdefo,res residual deformation signal



The propagation law results in the variance matrix:

[

Qyy Qyz

Qzy Qzz

]

=

[

Qunw
y1

Qdefo,res

Qdefo,res Qdefo,res

]

(21)

The matrix Bdefo contains zero columns corresponding with
the parameters in b̌ that are not related to deformation, e.g.,
height. This does not cause problems, as this matrix is not
involved in any inversion.

Applying the BLUP theory results in a predicted deforma-
tion vector and its error variance matrix, which are the PS-
InSAR observations and their dispersion in the integrated
mathematical model:

ž = Bdefob̌ + šdefo,res (22)

Pžž = Qzz − QzyQ
−1
yy Qyz + (Bdefo − QzyQ−1

yy B1)

Qb̌b̌(Bdefo − QzyQ
−1
yy B1)

T (23)

The main difficulties in predicting the deformation observa-
tion vector are:

• the covariance functions of the atmosphere and the
residual deformation signal for constructing Qatmo

and Qdefo,res,

• the dimensions of the adjustment problem.

The covariance function describes the spatial and residual
behavior of the deformation signal, which means that either
knowledge about the deformation signal is required, or that
redundancy and network construction has to be sufficient to
estimate the stochastic model parameters. The dimension of
the adjustment problem is too large to calculate the solution
at once, especially for the matrix inverses to be computed.
This means that the adjustment problem has to be split up
in (groups of) arcs, and as a result a large number of con-
nection adjustments have to be solved additionally.

4.4 PS-InSAR and leveling integration in the parame-
ter space

This paragraph describes the mathematical model for com-
bining PS-InSAR with leveling measurements for the joint
estimation of deformation parameters in the presence of
several deformation regimes. This mathematical model is
based on estimators and predictors which are optimal in the

sense that they are unbiased and have minimum error vari-
ance.

The relation between measurements and unknown deforma-
tion parameters can be written in the following way:

[

y
lev

y
psi

]

=

[

y
lev
ž

]

= Ax +

D
∑

d=1

sd(x, y, t) +

[

nlev
0

]

+

[

0
npsi

]

(24)

where

y
lev

leveling observations
y

psi
PS-InSAR observation vector, which is
equal to the predicted deformation ž

A design matrix defining the relation be-
tween observations and unknown deforma-
tion parameters

x unknown deformation parameters
sd(x, y, t) signal describing the discrepancy between

model and actual deformation for deforma-
tion regime d with a certain spatial (x, y)
and temporal (t) behavior

nlev measurement error leveling
npsi measurement error PS-InSAR

This can be written as a combined functional and stochastic
model:

E{y} = Ax; Qy =

D
∑

d=1

Qsd(x,y,t) +

[

Qnlev 0
0 Qnpsi

]

(25)

where Qnpsi equals Qžž.

Best Linear Unbiased Estimators (BLUE) for the deforma-
tion parameters and their variance matrix can then be cal-
culated. The (residual) signals due to different deforma-
tion regimes can be predicted using the BLUP theory, see
Eq. (20). However, the application of this theory is not
straightforward. The indentified difficulties are:

• the choice of the unknowns and the possible non-
linear relation with the observations,

• rank deficiencies,

• different nature of the (double-difference) observa-
tions from different techniques,

• determination of the deformation regime covariance
functions,



• determination of the PS-InSAR measurement noise.

A non-linear relation between observations and unknowns
is commonly solved by linearizing the equations and itera-
tively solving the adjustment problem.

Rank deficiencies may be inherent to the relation between
the observations and the unknowns. For example, heights
can never be estimated from height differences, nor from
height double-differences. To compute heights from height
differences, the height of one reference point serves as an
S-basis (Baarda, 1981). However, it does not matter which
reference point is chosen, as the adjustment results are in-
trinsically the same.

Although leveling height double-differences and PS-InSAR
double-differences quantify the same deformation double
difference, they may need their own S-basis. This occurs for
example if the unknowns are PS and benchmark ’heights’.
As a PS and a benchmark are never physically the same,
two S-bases have to be defined. In this case the leveling and
PS-InSAR measurements are only connected stochastically
through the spatio-temporal deformation regimes.

Regarding the covariance functions for the deformation
regimes, the same as for the PS-InSAR estimation holds:
knowledge about the deformation regimes is required and
stochastic parameters can only be estimated with a high pre-
cision if there is enough redundancy in the mathematical
model.

As the measurement precision of a PS cannot be separated
from noise due its physical properties (signal against clutter
in the surroundings) it is difficult to estimate the precision of
a PS observation. However, through Variance Component
Estimation (Teunissen, 1988), stochastic model parameters
can be estimated. The validity of the PS stochastic model
based on Signal-to-Clutter ratio (SCR) has been tested for
the five corner reflectors deployed in Delft using the in-
dependent leveling technique (Ketelaar et al., 2004). The
results show an overestimation of the a-priori SCR phase
variance, which indicates that the stochastic model has to
be treated carefully.

5 CONCLUSION

The use of integer least-squares in PS-InSAR enables a sys-
tematic and rigorous assessment of the precision and reli-
ability of the derived parameters. Standard geodetic data
adjustment, testing and quality description methods can be
applied. With the quality description obtained, it is possi-
ble to integrate PS-InSAR observables with other geodetic
data such as leveling and GPS. Because the physical loca-
tion of the measurement points differs, it is only possible to

integrate the techniques in the joint estimation of the defor-
mation parameter.

The most crucial step in PS-InSAR is the correct estima-
tion of the integer valued phase ambiguities. Only when
the ambiguities are estimated correctly, the derived defor-
mation parameters will be reliable. Up till now the use of
spatial correlation between PS is restricted to single arcs.
Future research will focus on incorporation of the spatial
correlation between nearby PS to increase the success rate
of correct integer estimation.

REFERENCES

Baarda, W. (1981). S-Transformations and Criterion Ma-
trices, volume 5 of Publications on Geodesy, New Series.
Netherlands Geodetic Commission, Delft, 2 edition.

Counselman, C. C. and Gourevitch, S. A. (1981). Minia-
ture interferometer terminals for earth surveying: ambi-
guity and multipath with the Global Positioning System.
IEEE Transactions on Geoscience and Remote Sensing,
19(4):244–252.

Ferretti, A., Prati, C., and Rocca, F. (2000). Nonlinear
subsidence rate estimation using permanent scatterers in
differential SAR interferometry. IEEE Transactions on
Geoscience and Remote Sensing, 38(5):2202–2212.

Ferretti, A., Prati, C., and Rocca, F. (2001). Permanent scat-
terers in SAR interferometry. IEEE Transactions on Geo-
science and Remote Sensing, 39(1):8–20.

Hanssen, R. (2004). Stochastic modeling of time series
radar interferometry. In igarss04, pages cdrom, 4 pages.

Kampes, B. F. (2005). Displacement Parameter Estimation
using Permanent Scatterer Interferometry. PhD thesis,
Delft University of Technology. To be submitted.

Kampes, B. M. and Hanssen, R. F. (2004). Ambiguity
resolution for permanent scatterer interferometry. IEEE
Transactions on Geoscience and Remote Sensing, in
print.

Ketelaar, G., Marinkovic, P., and Hanssen, R. (2004). Vali-
dation of point scatterer phase statistics in multi-pass In-
SAR. In salzburg04, page 10 pp.

Teunissen, P. J. G. (1988). Towards a Least-Squares Frame-
work for Adjusting and Testing of both Functional and
Stochastic Models. Delft University of Technology, 2nd
edition edition.

Teunissen, P. J. G. (1993). Least-squares estimation of the
integer gps ambiguities. In Invited Lecture, Section IV
Theory and Methodology, IAG General Meeting, Beijing,
China, august 1993. Also in: Delft Geodetic Computing
Centre, LGR Series, No. 6, 1994.

Teunissen, P. J. G. (2000). Testing theory; an introduction.
Delft University Press, Delft, 1 edition.

Teunissen, P. J. G., Simons, D. G., and Tiberius, C. C. J. M.
(2005). Probability and observation theory. DEOS.


